Accéder au contenu principal

Aux sources de l’IA : le prix Nobel de physique attribué aux pionniers des réseaux de neurones artificiels et de l’apprentissage machine

  Portraits de John Hopfield et Geoffrey Hinton, lauréats du prix Nobel de physique 2024 pour leurs découvertes et inventions qui ont permis de développer l'apprentissage machine avec des réseaux de neurones artificiels. Niklas Elmehed © Nobel Prize Outreach Par  Thierry Viéville , Inria Le prix Nobel de physique 2024 récompense des travaux précurseurs de John Hopfield et Geoffrey Hinton sur les réseaux de neurones artificiels, à la base de l’apprentissage machine. Ces travaux ont participé au développement de l’intelligence artificielle, qui chamboule aujourd’hui de nombreux secteurs d’activité. C’est à une question simple que John Hopfield et Geoffrey Hinton ont apporté une réponse qui leur vaut aujourd’hui le prix Nobel de physique : « Quelle est la description la plus simple que nous pourrions faire de nos neurones, ces composants du cerveau, siège de notre intelligence ? » Un neurone, qu’il soit artificiel ou biologique, est u

Comment fonctionnent l’implant Neuralink et les autres interfaces cerveau-machine

capteur
Un exemple de réseau de capteurs flexible et implantable, développés à l'université de Californie à San Diego. UC San Diego Jacobs School of Engineering, Flickr, CC BY

Par Clément Hébert, Université Grenoble Alpes (UGA) et Blaise Yvert, Inserm

Les interfaces électriques cerveau-machine implantables promettent des avancées majeures, aussi bien pour comprendre le fonctionnement du cerveau que pour compenser ou remplacer des fonctions perdues suite à un accident ou une maladie neurodégénérative : vision primaire, motricité, synthèse vocale ou écriture digitale.

Alors que ces interfaces sont encore loin d’être vraiment opérationnelles en clinique, elles représentent tout de même déjà pour certains l’espoir d’augmenter les capacités humaines, avec des applications à la fois sensorielles (vision nocturne par exemple) et fonctionnelles (augmentation des capacités mnésiques ou intellectuelles par exemple). Même si nombre de ces applications relèvent encore de la science-fiction, comme la transmission de sensation ou l’augmentation de nos performances intellectuelles, d’autres ne paraissent pas hors de portée, comme la vision dans l’infrarouge ou l’ultraviolet par exemple.

Même si des questions éthiques accompagnent le développement des interfaces cerveau-machine chez Neuralink, la très médiatique entreprise d’Elon Musk, le propos de notre article est d’expliquer leur fonctionnement technique, leurs enjeux technologiques et le contraste entre les espoirs qu’elles suscitent et ce qu’elles sont actuellement capables de réaliser.

En effet, les dispositifs actuels sont confrontés à de multiples verrous technologiques et conceptuels. Les contraintes techniques limitent pour l’instant leur utilisation à des cas cliniques précis, où les risques liés à l’insertion d’un implant sont contrebalancés par l’estimation d’un bénéfice immédiat ou futur pour les patients. On est ainsi très loin de pouvoir utiliser ces implants en routine clinique et dans la vie de tous les jours, et qui plus est pour des applications ludiques ou encore d’augmentation des capacités humaines.

Où en sont les implants actuels, et notamment l’implant Neuralink ?

Pour la partie médicale et la compréhension du cerveau, les interfaces en développement au sein de laboratoires académiques et industriels offrent déjà des perspectives intéressantes. Mais peu d’outils académiques offrent à l’heure actuelle une solution complètement implantée avec autant d’électrodes et de quantité de données que celles de l’interface de Neuralink.

Celle-ci vise à mettre en place une interface cerveau-machine implantable en une matinée, à la fois pour le domaine médical pour des personnes parlysées, mais aussi pour permettre à tout un chacun de contrôler son smartphone, un jeu vidéo, ou à terme d’augmenter ses capacités humaines. Pour cela, elle vise une technologie d’implants cérébraux enregistrant un grand nombre de neurones, qui n’aurait pas d’impact esthétique et ne présenterait aucun danger – une telle technologie n’existe pas à l’heure actuelle.

Si l’implant de Neuralink s’avère fonctionner de manière robuste et s’il obtient l’approbation des agences de santé pour une utilisation chez l’humain, il pourrait permettre d’avancer vers un décodage plus précis de l’activité neuronale, la conception de neuroprothèses cliniques et la compréhension de modes de fonctionnement du cerveau inaccessibles jusqu’à présent.

Comment ça marche ? De l’implant neuronal à la neuroprothèse

Dans la littérature et l’actualité, on retrouve indistinctement les termes d’« interface électrique cerveau-machine », de « neuroprothèse » ou d’« implant neuronal ». Une « neuroprothèse » est un type d’interface cerveau-machine qui va permettre de suppléer ou de remplacer une fonction perdue. Tout comme le système nerveux envoie ou reçoit des informations de son environnement, les neuroprothèses vont capter de l’information de notre environnement à travers des systèmes artificiels pour la renvoyer vers le système nerveux ou bien capter l’information du système nerveux pour la renvoyer, soit vers lui-même, soit vers notre environnement à l’aide de dispositifs artificiels.

La neuroprothèse ou l’interface électrique cerveau-machine est constituée de plusieurs parties. En allant du système neuronal vers une interface utilisable pour l’humain (comme l’écran d’un ordinateur), les constituants d’une neuroprothèse sont les suivants : 1) un réseau d’électrodes mis en contact avec le tissu neuronal, 2) un système de connexion permettant de relier les électrodes à un système électronique, 3) un système de communication permettant d’envoyer des signaux vers les électrodes ou de recevoir les signaux collectés par les électrodes, 4) un système d’enregistrement des données, 5) un système de traitement et de décodage des données, 6) un système d’envoi de l’information vers un ou plusieurs effecteurs, par exemple un bras robotique. La partie implantable, l’« implant neuronal » à proprement parler, est actuellement composé des parties 1-2 ou 1-2-3.

Quelles sont les limites technologiques actuelles des interfaces cerveau-machine ?

L’objectif actuel est de disposer d’un implant neuronal ayant un grand nombre d'électrodes d’enregistrement ou de stimulation, dont l’efficacité se maintient sur des dizaines d’années. Si, malgré plus de trente années de recherche, cet objectif n’est pas encore atteint, c’est que de nombreux défis majeurs lui sont associés, notamment :

  • La chirurgie d’implantation doit être la moins traumatisante possible et en particulier ne pas léser les microvaisseaux sanguins du cortex sous peine de déclencher une réaction inflammatoire importante.

  • L’implant doit être le plus fin possible, voire flexible, de façon à ne pas engendrer de traumatisme trop important ou de réaction de rejet dans le cerveau lors de son insertion. De plus, à terme, la gangue de protection générée par le système nerveux peut empêcher la communication entre les électrodes et les neurones.

  • Pour enregistrer ou stimuler le plus de neurones possible, il a fallu développer des méthodes de microfabrication sur microdispositifs flexibles afin d’intégrer le plus grand nombre d’électrodes possible dans un espace très réduit. Les électrodes actuelles peuvent atteindre des tailles de l’ordre de 5 à 10 micromètres.

  • De nombreux nouveaux matériaux d’électrodes ont été développés afin de détecter les très faibles champs électriques générés par les neurones ou de les stimuler, ce que des métaux classiques comme le platine ne permettaient pas. Aujourd’hui, les performances des électrodes ont été grandement améliorées notamment grâce à l’introduction de matériaux poreux.

  • L’implant doit garder l’intégrité de ses performances électriques au cours du temps, mais les technologies flexibles actuelles sont sensibles à l’eau sur le long terme, ce qui affecte la durée de vie des implants. Ce point fait partie des verrous technologiques majeurs.

  • Afin de pouvoir se déplacer normalement en dehors d’un laboratoire ou d’un hôpital, les implants doivent pouvoir communiquer et s’alimenter en énergie, sans fils. Mais les technologies actuelles de transmission radiofréquence des signaux, lorsque les électrodes sont nombreuses, engendrent une élévation locale de la température qui est nocive pour les tissus neuronaux – autre verrou technologique majeur.

Les pistes pour concrétiser les interfaces cerveau-machine

Pour tenter de résoudre ces problèmes, l’entreprise Neuralink a par exemple conçu un réseau d’électrodes pour stimuler ou enregistrer l’activité neuronale, réparti sur plusieurs filaments de polymère flexible qui embarquent des microélectrodes. Les matériaux utilisés sont biocompatibles et des couches de carbure de silicium permettant d’assurer l’intégrité électronique des implants semblent être à l’étude (un concept issu de laboratoires de recherche de l’Université de Berkeley et également en cours de développement en France dans le cadre du projet SiCNeural financé par l'ANR). Enfin, chaque filament est connecté à une puce électronique qui sert à enregistrer l’activité neuronale ou générer des impulsions électriques pour la stimulation.

De plus, l’entreprise développe un robot autonome capable de réaliser toutes les étapes de la chirurgie d’implantation, de la trépanation à l’insertion des implants.

L’insertion des implants souples dans le cerveau n’est en effet pas simple et plusieurs stratégies ont été développées par différents laboratoires, comme la rigidification temporaire de l’implant à l’aide d’un polymère résorbable, l’utilisation d’un guide rigide ou d’une approche robotisée ressemblant à une « machine à coudre », également développée à Berkeley, qui enfile une aiguille dans un trou situé à l’extrémité de l’implant flexible afin de pousser l’implant dans le cerveau puis de retirer uniquement l’aiguille. Cette dernière méthode est reprise par Neuralink, qui la combine à un système de caméras repérant les zones de la surface du cortex non ou peu vascularisées où peuvent être insérés les implants en limitant les microsaignements.

Analyser et transmettre les données, sans surchauffe

Quant à la problématique de l’échauffement local dû à l’analyse et la transmission sans fil des données, deux technologies avaient jusque-là été appliquées chez l’humain.

La première est celle de la société BlackRock Neurotech, qui déporte les circuits de traitement et d’envoi des signaux au-dessus de la boite crânienne. Ceci génère des problèmes d’esthétisme mais aussi des risques d’infections à cause des fils qui courent de la peau vers le cerveau.

La deuxième technologie est celle du laboratoire CLINATEC du CEA Grenoble, qui ne collecte que des signaux ne nécessitant pas une haute précision de numérisation et n’enregistre l’information que sur un maximum de 64 électrodes simultanément. Ce laboratoire a ainsi réalisé le premier implant neuronal sans fil disposant d’autant de voies, et complètement intégré sous la peau. Il est inséré en remplacement d’une partie de l’os du crâne. Neuralink propose de son côté une puce plus petite, également insérée dans l'os du crâne, traitant plus de 1000 voies mais envoyant uniquement certaines caractéristiques des signaux neuronaux, jugées importantes grâce à des algorithmes embarqués.

Concernant la durée de vie des implants, il faudra encore attendre un peu pour voir si la stratégie est efficace et permet d’avoir une interface stable sur plusieurs années. Une fois cette limite dépassée, il faudra certainement s’attaquer au recueil d’un nombre encore plus grand de signaux. À l’heure actuelle, on peut estimer que la technologie Neuralink peut enregistrer jusqu’à environ 3000 neurones avec ses 1024 électrodes : c’est impressionnant du point de vue de l’état de l’art, mais très loin d’être suffisant pour appréhender l’immensité des signaux cérébraux.

Conceptuellement, malgré une très bonne miniaturisation, il sera très difficile d’atteindre l’enregistrement de millions de neurones individuels avec cette technologie sans que l’implant et la connectique associée prennent une place trop importante dans le cerveau. D’autres concepts devront peut-être être imaginés pour aller au-delà de ces limites.The Conversation

Clément Hébert, Chargé de recherche implants Neuronaux, neuroprothèses, Inserm U1216 Grenoble Institut des Neurosciences, Université Grenoble Alpes (UGA) et Blaise Yvert, Directeur de recherche à l'Inserm, responsable de l'équipe Neurotechnologies et Dynamique des Réseaux, Inserm

Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.

Posts les plus consultés de ce blog

Le bipeur des années 80 plus efficace que le smartphone ?

Par André Spicer, professeur en comportement organisationnel à la Cass Business School (City University of London) : Vous vous souvenez des bipeurs ? Ces appareils étaient utilisés largement avant l'arrivée massive des téléphones portables et des SMS. Si vous aviez un bipeur, vous pouviez recevoir des messages simples, mais vous ne pouviez pas répondre. Un des rares endroits où on peut encore en trouver aujourd’hui sont les hôpitaux. Le Service National de Santé au Royaume-Uni (National Health Service) en utilise plus de 130 000. Cela représente environ 10 % du nombre total de bipeurs présents dans le monde. Une récente enquête menée au sein des hôpitaux américains a révélé que malgré la disponibilité de nombreuses solutions de rechange, les bipeurs demeurent le moyen de communication le plus couramment utilisée par les médecins américains. La fin du bipeur dans les hôpitaux britanniques ? Néanmoins, les jours du bipeur dans les hôpitaux britanniques pourraient être compté

Quelle technologie choisir pour connecter les objets ?

Par Frédéric Salles, Président et co-fondateur de Matooma   En 2021, le nombre total d'objets connectés utilisés atteindra les 25 milliards selon Gartner. Il est ainsi légitime de se demander quelles sont les technologies principales permettant de connecter les objets, et quelle pourrait être celle la plus adaptée pour sa solution. Un projet de vidéosurveillance par exemple n'aura absolument pas les mêmes besoins qu'un projet basé sur le relevé de température au milieu du désert. Ainsi pour trouver la meilleure connectivité pour son objet, de nombreuses questions peuvent se poser : mon objet fonctionne-t-il sur batterie ou est-il alimenté ? Mon objet restera-t-il statique ou sera-t-il mobile ?  Mon objet est-il susceptible d'être dans un endroit difficile d'accès ou enterré ? A quelle fréquence mes données doivent-elles remonter ? Etc. Voici les différentes solutions actuellement disponibles sur le marché. Courte distance : RFID/Bluetooth/WiFi La RFID (Ra

Comment les machines succombent à la chaleur, des voitures aux ordinateurs

  La chaleur extrême peut affecter le fonctionnement des machines, et le fait que de nombreuses machines dégagent de la chaleur n’arrange pas les choses. Afif Ramdhasuma/Unsplash , CC BY-SA Par  Srinivas Garimella , Georgia Institute of Technology et Matthew T. Hughes , Massachusetts Institute of Technology (MIT) Les humains ne sont pas les seuls à devoir rester au frais, en cette fin d’été marquée par les records de chaleur . De nombreuses machines, allant des téléphones portables aux voitures et avions, en passant par les serveurs et ordinateurs des data center , perdent ainsi en efficacité et se dégradent plus rapidement en cas de chaleur extrême . Les machines génèrent de plus leur propre chaleur, ce qui augmente encore la température ambiante autour d’elles. Nous sommes chercheurs en ingénierie et nous étudions comment les dispositifs mécaniques, électriques et électroniques sont affectés par la chaleur, et s’il est possible de r

De quoi l’inclusion numérique est-elle le nom ?

Les professionnels de l'inclusion numérique ont pour leitmotiv la transmission de savoirs, de savoir-faire et de compétences en lien avec la culture numérique. Pexels , CC BY-NC Par  Matthieu Demory , Aix-Marseille Université (AMU) Dans le cadre du Conseil National de la Refondation , le gouvernement français a proposé au printemps 2023 une feuille de route pour l’inclusion numérique intitulée « France Numérique Ensemble » . Ce programme, structuré autour de 15 engagements se veut opérationnel jusqu’en 2027. Il conduit les acteurs de terrain de l’inclusion numérique, notamment les Hubs territoriaux pour un numérique inclusif (les structures intermédiaires ayant pour objectif la mise en relation de l’État avec les structures locales), à se rapprocher des préfectures, des conseils départementaux et régionaux, afin de mettre en place des feuilles de route territoriales. Ces documents permettront d’organiser une gouvernance locale et dé

La fin du VHS

La bonne vieille cassette VHS vient de fêter ses 30 ans le mois dernier. Certes, il y avait bien eu des enregistreurs audiovisuels avant septembre 1976, mais c’est en lançant le massif HR-3300 que JVC remporta la bataille des formats face au Betamax de Sony, pourtant de meilleure qualité. Ironie du sort, les deux géants de l’électronique se retrouvent encore aujourd’hui face à face pour déterminer le format qui doit succéder au DVD (lire encadré). Chassée par les DVD ou cantonnée au mieux à une petite étagère dans les vidéoclubs depuis déjà quatre ans, la cassette a vu sa mort programmée par les studios hollywoodiens qui ont décidé d’arrêter de commercialiser leurs films sur ce support fin 2006. Restait un atout à la cassette VHS: l’enregistrement des programmes télé chez soi. Las, l’apparition des lecteurs-enregistreurs de DVD et, surtout, ceux dotés d’un disque dur, ont sonné le glas de la cassette VHS, encombrante et offrant une piètre qualité à l’heure de la TNT et des écrans pl

Deepfakes, vidéos truquées, n’en croyez ni vos yeux ni vos oreilles !

Par  Divina Frau-Meigs , Auteurs historiques The Conversation France Les spécialistes en fact-checking et en éducation aux médias pensaient avoir trouvé les moyens de lutter contre les « deepfakes » , ou hypertrucages , ces manipulations de vidéos fondées sur l’intelligence artificielle, avec des outils de vérification comme Invid-Werify et le travail des compétences d’analyse d’images (littératie visuelle), avec des programmes comme Youverify.eu . Mais quelques cas récents montrent qu’une nouvelle forme de cyberattaque vient de s’ajouter à la panoplie des acteurs de la désinformation, le deepfake audio. Aux États-Unis, en janvier 2024, un robocall généré par une intelligence artificielle et prétendant être la voix de Joe Biden a touché les habitants du New Hampshire, les exhortant à ne pas voter, et ce, quelques jours avant les primaires démocrates dans cet État. Derrière l’attaque, Steve Kramer, un consultant travaillant pour un adversaire de Biden, Dean Phillips. En