Depuis Garry Kasparov contre Deep Blue, ce que nous apprend l’histoire des échecs sur les risques de l’IA
En 1997, le champion du monde d’échecs Garry Kasparov perd pour la première fois de l’histoire un match face à un ordinateur, Deep Blue. Cet événement historique pour le jeu comme pour l’informatique est aujourd’hui porté à l’écran dans une minisérie d’Arte, Remacth. 27 ans plus tard, qu’est-ce que la défaite de l’humain contre la machine nous a appris, et ces leçons peuvent-elles éclairer l’arrivée massive de l’IA dans nos vies ?
Les récents progrès de l’intelligence artificielle (IA), comme le développement des IA génératives avec l’apparition de ChatGPT en novembre 2022, ont soulevé beaucoup d’interrogations, d’espoirs, et de craintes. Courant printemps 2023, le Congrès américain a auditionné OpenAI, la société ayant développé ChatGPT et l’Union européenne vient d’adopter son premier texte législatif au sujet de l’IA.
Dans les parlements comme sur les réseaux sociaux, les rapides progrès de l’IA animent les discussions. À l’avenir, à quels impacts faut-il s’attendre sur notre société ? Pour tenter de répondre à cette question de manière dépassionnée, nous proposons de regarder ce qui s’est passé dans un secteur qui a déjà connu l’arrivée et la victoire de l’IA sur les capacités humaines : les échecs. La machine y a en effet un niveau supérieur à celui des humains depuis maintenant plus d’un quart de siècle.
Pourquoi le jeu d’échecs comme indicateur ?
Depuis les débuts de l’informatique, les échecs ont été utilisés comme un indicateur des progrès logiciels et matériels. C’est un jeu intéressant à de multiples niveaux pour étudier les impacts des IA sur la société :
C’est une activité intellectuelle qui demande différentes compétences : visualisation spatiale, mémoire, calcul mental, créativité, capacité d’adaptation, etc., compétences sur lesquelles l’IA vient concurrencer l’esprit humain.
Le jeu n’a pas changé depuis des siècles. Les règles sont bien établies et cela donne une base stable pour étudier l’évolution des joueurs.
Il est possible de mesurer la force des machines de manière objective et de comparer ce niveau à celui des humains avec le classement Elo.
Le champ d’études est restreint : il est clair que les échecs ne sont qu’un tout petit aspect de la vie, mais c’est justement le but. Cette étroitesse du sujet permet de mieux cibler les impacts des IA sur la vie courante.
Les IA ont dépassé le niveau des meilleurs joueurs humains depuis plus de 20 ans. Il est donc possible de voir quels ont été les impacts concrets sur le jeu d’échecs et la vie de sa communauté, qui peut être vue comme un microcosme de la société. On peut également étudier ces impacts en regard de la progression des IA au cours du temps.
Explorons quelles ont été les évolutions dans le monde des échecs depuis que Garry Kasparov, alors champion du monde en titre, a perdu une partie contre Deep Blue en 1996, puis le match revanche joué en 1997. Nous allons passer en revue plusieurs thèmes qui reviennent dans la discussion sur les risques liés aux IA et voir ce qu’il en a été de ces spéculations dans le domaine particulier des échecs.
Les performances de l’IA vont-elles continuer à augmenter toujours plus vite ?
Il existe deux grandes écoles pour programmer un logiciel d’échecs : pendant longtemps, seule la force brute fonctionnait. Il s’agissait essentiellement de calculer le plus vite possible pour avoir un arbre de coups plus profonds, c’est-à-dire capable d’anticiper la partie plus loin dans le futur.
Aujourd’hui, la force brute est mise en concurrence avec des techniques d’IA issues des réseaux de neurones. En 2018, la filiale de Google DeepMind a produit AlphaZero, une IA d’apprentissage profond par réseau de neurones artificiels, qui a appris tout seul en jouant contre lui-même aux échecs. Parmi les logiciels les plus puissants de nos jours, il est remarquable que LC0, qui est une IA par réseau de neurones, et Stockfish, qui est essentiellement un logiciel de calcul par force brute, aient tous les deux des résultats similaires. Dans le dernier classement de l’Association suédoise des échecs sur ordinateur (SSDF), ils ne sont séparés que de 4 points Elo : 3 582 pour LC0 contre 3 586 pour Stockfish. Ces deux manières totalement différentes d’implanter un moteur d’échecs sont virtuellement indistinguables en termes de force.
En termes de points Elo, la progression des machines a été linéaire. Le graphique suivant donne le niveau du meilleur logiciel chaque année selon le classement SSDF qui a commencé depuis le milieu des années 1980. Le meilleur logiciel actuel, LC0, en est à 3586, ce qui prolonge la figure comme on pourrait s’y attendre.
Cette progression linéaire est en fait le reflet d’une progression assez lente des logiciels. En effet, le progrès en puissance de calcul est, lui, exponentiel. C’est la célèbre loi de Moore qui stipule que les puissances de calcul des ordinateurs doublent tous les dix-huit mois.
Cependant, Ken Thompson, informaticien américain ayant travaillé dans les années 80 sur Belle, à l’époque le meilleur programme d’échecs, avait expérimentalement constaté qu’une augmentation exponentielle de puissance de calcul conduisait à une augmentation linéaire de la force des logiciels, telle qu’elle a été observée ces dernières dizaines d’années. En effet, le fait d’ajouter un coup supplémentaire de profondeur de calcul implique de calculer bien plus de nouvelles positions. On voit ainsi que l’arbre des coups possibles est de plus en plus large à chaque étape.
Les progrès des IA en tant que tels semblent donc faibles : même si elles ne progressaient pas, on observerait quand même une progression de la force des logiciels du simple fait de l’amélioration de la puissance de calcul des machines. On ne peut donc pas accorder aux progrès de l’IA tout le crédit de l’amélioration constante des ordinateurs aux échecs.
La réception par la communauté de joueurs d’échecs
Avec l’arrivée de machines puissantes dans le monde des échecs, la communauté a nécessairement évolué. Ce point est moins scientifique mais est peut-être le plus important. Observons quelles ont été ces évolutions.
« Pourquoi les gens continueraient-ils de jouer aux échecs ? » Cette question se posait réellement juste après la défaite de Kasparov, alors que le futur des échecs amateurs et professionnels paraissait sombre. Il se trouve que les humains préfèrent jouer contre d’autres humains et sont toujours intéressés par le spectacle de forts grands maîtres jouant entre eux, et ce même si les machines peuvent déceler leurs erreurs en temps réel. Le prestige des joueurs d’échecs de haut niveau n’a pas été diminué par le fait que les machines soient capables de les battre.
Le style de jeu a quant à lui été impacté à de nombreux niveaux. Essentiellement, les joueurs se sont rendu compte qu’il y avait beaucoup plus d’approches possibles du jeu qu’on le pensait. C’est l’académisme, les règles rigides, qui en ont pris un coup. Encore faut-il réussir à analyser les choix faits par les machines. Les IA sont par ailleurs très fortes pour pointer les erreurs tactiques, c’est-à-dire les erreurs de calcul sur de courtes séquences. En ligne, il est possible d’analyser les parties de manière quasi instantanée. C’est un peu l’équivalent d’avoir un professeur particulier à portée de main. Cela a sûrement contribué à une augmentation du niveau général des joueurs humains et à la démocratisation du jeu ces dernières années. Pour le moment, les IA n’arrivent pas à prodiguer de bons conseils en stratégie, c’est-à-dire des considérations à plus long terme dans la partie. Il est possible que cela change avec les modèles de langage, tel que ChatGPT.
Les IA ont aussi introduit la possibilité de tricher. Il y a eu de nombreux scandales à ce propos, et on se doit de reconnaître qu’il n’a pas à ce jour de « bonne solution » pour gérer ce problème qui rejoint les interrogations des professeurs qui ne savent plus qui, de ChatGPT ou des étudiants, leur rendent les devoirs.
Conclusions temporaires
Cette revue rapide semble indiquer qu’à l’heure actuelle, la plupart des peurs exprimées vis-à-vis des IA ne sont pas expérimentalement justifiées. Le jeu d’échecs est un précédent historique intéressant pour étudier les impacts de ces nouvelles technologies quand leurs capacités se mettent à dépasser celles des humains. Bien sûr, cet exemple est très limité, et il n’est pas possible de le généraliser à l’ensemble de la société sans précaution. En particulier, les modèles d’IA qui jouent aux échecs ne sont pas des IA génératives, comme ChatGPT, qui sont celles qui font le plus parler d’elles récemment. Néanmoins, les échecs sont un exemple concret qui peut être utile pour mettre en perspective les risques associés aux IA et à l’influence notable qu’elles promettent d’avoir sur la société.
Frédéric Prost, Maître de conférences en informatique, INSA Lyon – Université de Lyon
Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.