Accéder au contenu principal

L’Arcep et l’ADEME créent l’observatoire des impacts environnementaux du numérique

Dans un contexte où la société française prend de plus en plus conscience de son empreinte numérique, l'Autorité de régulation des communications électroniques, des postes et de la distribution de la presse (ARCEP) et l'Agence de la transition écologique (ADEME) viennent de franchir un pas décisif. Ces deux institutions ont annoncé ce jeudi 12 décembre la création d'un observatoire des impacts environnementaux du numérique, une initiative qui promet de révolutionner notre compréhension des enjeux écologiques liés aux technologies de l'information. Cette plateforme, fruit d'une collaboration initiée en 2020 à la demande des ministères de la Transition écologique et de l'Économie, vise à devenir une référence incontournable en matière de données fiables sur l'empreinte environnementale du numérique. "L'observatoire a vocation à constituer une plateforme de référence en matière de données fiables et sourcées sur les impacts environnementaux du numériqu...

Le Machine Learning et l’IA

 

IA

Par Filip Cerny, Product Marketing Manager, Progress

Il est impossible d’échapper au débat sur la façon dont le Machine Learning (ML) et les systèmes d’IA vont révolutionner la façon dont les gens et les industries travaillent. La majeure partie de ce débat doit être revue. En effet, les entreprises sont toujours en train d’évaluer la façon dont les systèmes d’IA (généralement des systèmes de grand modèle de langage (LLM) comme OpenAI, ChatGPT, Google Gemini, Anthropic Claude et autres) améliorent la productivité des travailleurs et favorisent la croissance. 

La cybersécurité est un secteur où l’utilisation intensive de solutions améliorées par l’IA est courante. Mais qu’est-ce que le Machine Learning et l’IA impliquent ? Et comment sont-ils liés aux autres techniques que nous utilisons en matière de cybersécurité ?

Comprendre l’intelligence artificielle

L’IA est un vaste domaine qui se concentre sur la création de systèmes intelligents capables d’effectuer des tâches qui nécessitent généralement une intelligence humaine. Les systèmes d’IA peuvent apprendre à partir de données, s’adapter à de nouvelles informations ou entrées et résoudre des problèmes complexes. Cela en fait des outils précieux pour effectuer de nombreuses tâches complexes. 

Le ML est un composant de l’IA. À la base, le ML aide un système à apprendre et à s’améliorer à partir de l’expérience sans être explicitement programmé. Les réseaux neuronaux, inspirés de l’anatomie du cerveau, sont un composant clé de nombreux systèmes d’IA, leur permettant de reconnaître des modèles et de prendre des décisions. Une application courante de l’IA est la reconnaissance d’images, dans laquelle un modèle ML est formé sur un grand ensemble de données d’images étiquetées pour identifier les modèles et les caractéristiques associés à chaque étiquette. Cela lui permet de classer avec précision de nouvelles images invisibles et fonctionne pour de nombreuses classes d’images, telles que les radiographies médicales. Ce n’est pas seulement utile pour les photos de chats ! 

Les LLM mentionnés ci-dessus, qui se sont développés au cours des 18 derniers mois, utilisent une combinaison de techniques de ML supervisées et non supervisées pendant leur constitution. La plupart du temps de formation pour un modèle LLM (comme ChatGPT) se fait généralement via l’apprentissage auto-supervisé. Dans ce cas, le modèle est entraîné à prédire le mot ou le jeton suivant dans une séquence basée sur les mots précédents sans avoir d’étiquettes explicites. Cela permet aux modèles d’apprendre des modèles et des relations dans le langage. Ceci à partir de grandes quantités de données textuelles non étiquetées telles que des livres, le Web, des archives de journaux et bien plus encore. 

Il est important de souligner que les LLM utilisent des méthodes de ML, mais les LLM ne sont pas le seul moyen de créer des systèmes basés sur l’IA. Même s’ils sont sous le feu des projecteurs en 2024 et occupent une grande partie du paysage des débats liés à l’IA. D’autres techniques, qui utilisent également le ML, qui relèvent de l’IA sont utilisées depuis des années, offrant des avantages dans de nombreuses industries et secteurs, en particulier dans le domaine de la cybersécurité.

Techniques d’IA dans les outils de cybersécurité

En cybersécurité, les techniques de ML améliorent les capacités de divers outils, en particulier les solutions de détection et de réponse au réseau (NDR). 

Les algorithmes de ML peuvent analyser d’énormes quantités de données réseau en temps réel, ce qui améliore la capacité à identifier les anomalies et les menaces potentielles avant qu’elles ne causent des dommages importants. Les techniques d’apprentissage supervisé utilisent des ensembles de données étiquetés de cybermenaces connues pour classer les menaces nouvelles et inconnues. Alternativement, les techniques d’apprentissage non supervisé telles que le clustering et la détection d’anomalies peuvent identifier des modèles ou des comportements inhabituels sans s’appuyer sur des données étiquetées.

Les modèles d’apprentissage profond, tels que les réseaux convolutifs et les réseaux récurrents, peuvent apprendre des modèles et des relations complexes dans les données de réseau. Ces modèles permettent de détecter les menaces sophistiquées en analysant les données de trafic réseau, notamment les en-têtes de paquets, les charges utiles et les informations de flux. Les modèles de ML s’entraînent à l’aide de différentes approches pour reconnaître le comportement normal du réseau, puis signaler les anomalies susceptibles d’indiquer des menaces potentielles telles qu’un accès non autorisé, des infections par des logiciels malveillants ou l’exfiltration de données. En apprenant et en s’adaptant en permanence, les modèles des outils basés sur le ML peuvent détecter les cybermenaces à un stade précoce, souvent avant qu’elles ne causent des dommages importants.

Il existe des solutions qui exploitent la puissance du ML pour détecter et atténuer les cybermenaces en identifiant les anomalies en temps réel. Comme Progress Flowmon par exemple. Ces solutions combinent des techniques d’apprentissage supervisé et non supervisé pour détecter les menaces connues et inconnues. Certains modèles d’IA sont entraînés sur de grandes quantités de données réseau historiques, et ils sont continuellement mis à jour. Ils apprennent au fur et à mesure de leur fonctionnement. Lorsque de nouveaux modèles de menaces apparaissent, l’IA peut apprendre et adopter des pratiques en conséquence.

Les techniques d’IA améliorent d’autres méthodes de détection

Les méthodes de détection basées sur l’IA améliorent les autres techniques traditionnelles qui ont toujours leur place dans la protection de la cybersécurité. Ces autres techniques non basées sur l’IA, telles que l’heuristique et la correspondance de motifs, se combinent avec les méthodes d’IA pour offrir des capacités de sécurité robustes. Cette approche combinée signifie que les modèles d’IA peuvent identifier les comportements suspects du réseau, tels que les transferts de données inhabituels ou l’activité anormale des utilisateurs, tandis que les techniques d’heuristique et de correspondance de modèles peuvent détecter les signatures de menaces et les anomalies connues et inconnues. 

  • L’heuristique et le filtrage sont des techniques fondamentales utilisées dans de nombreux outils de cybersécurité, y compris les solutions NDR. Mais, ils ont toujours leur place dans une posture défensive moderne.
  • Les heuristiques sont des règles pratiques qui utilisent des techniques basées sur l’expérience pour identifier rapidement les menaces. Ces méthodes basées sur des règles permettent une prise de décision rapide basée sur des caractéristiques couramment observées dans les logiciels malveillants ou d’autres types d’attaques. Lorsqu’elles sont intégrées à l’IA, les approches heuristiques réduisent les faux positifs tout en hiérarchisant les menaces réelles et affinent les capacités de détection des solutions de cybersécurité.
  • Le filtrage automatique implique la recherche de séquences spécifiques dans les données. Il est efficace pour identifier les signatures de menace connues trouvées dans de nombreuses variantes de logiciels malveillants et de virus. Cependant, les cybermenaces sont de plus en plus sophistiquées, contournant souvent les techniques traditionnelles de correspondance de motifs. C’est là que l’IA amplifie le filtrage des modèles, car elle peut apprendre et identifier des variations ou des modèles entièrement nouveaux qui indiquent une activité malveillante. Cela améliore ainsi considérablement l’efficacité et la réactivité des défenses de cybersécurité.

Les méthodes de détection basées sur l’IA s’intègrent aux techniques traditionnelles pour fournir une approche multicouche de la détection des menaces. C’est le cas de Progress Flowmon. Ainsi, voici comment l’IA améliore les autres méthodes de détection:

Heuristique - Les modèles d’IA peuvent aider à affiner et à optimiser les règles heuristiques basées sur des données historiques et des renseignements sur les menaces en temps réel. Cela réduit les faux positifs et améliore la précision des heuristiques basées sur le comportement.

Correspondance de modèles - Certaines techniques d’IA améliorent la correspondance de modèles en apprenant à identifier de nouveaux modèles de menaces et des variantes qui peuvent échapper à la détection traditionnelle basée sur les signatures. Les modèles ML apprennent et s’adaptent également en permanence.

Détection d’anomalies - Les algorithmes d’apprentissage fonctionnent avec des méthodes statistiques de détection d’anomalies pour identifier des modèles ou des comportements inhabituels dans le trafic réseau qui peuvent indiquer une attaque ou une menace.

Conclusion

Ainsi, certaines solutions combinent la puissance de l’IA et du ML avec d’autres méthodes de détection efficaces pour créer une approche approfondie et flexible permettant d’identifier et d’atténuer les cybermenaces en temps réel. En utilisant le ML, l’heuristique, la correspondance de modèles et la détection des anomalies, elles permettent aux entreprises de garder une longueur d’avance sur l’évolution des menaces et de maintenir une posture de sécurité solide.

Alors que les cybermenaces continuent de croître en sophistication et en fréquence, l’adoption de solutions de cybersécurité basées sur l’IA aidera les entreprises à garder une longueur d’avance et à maintenir une sécurité solide.

Posts les plus consultés de ce blog

Le bipeur des années 80 plus efficace que le smartphone ?

Par André Spicer, professeur en comportement organisationnel à la Cass Business School (City University of London) : Vous vous souvenez des bipeurs ? Ces appareils étaient utilisés largement avant l'arrivée massive des téléphones portables et des SMS. Si vous aviez un bipeur, vous pouviez recevoir des messages simples, mais vous ne pouviez pas répondre. Un des rares endroits où on peut encore en trouver aujourd’hui sont les hôpitaux. Le Service National de Santé au Royaume-Uni (National Health Service) en utilise plus de 130 000. Cela représente environ 10 % du nombre total de bipeurs présents dans le monde. Une récente enquête menée au sein des hôpitaux américains a révélé que malgré la disponibilité de nombreuses solutions de rechange, les bipeurs demeurent le moyen de communication le plus couramment utilisée par les médecins américains. La fin du bipeur dans les hôpitaux britanniques ? Néanmoins, les jours du bipeur dans les hôpitaux britanniques pourraient être compté...

Quelle technologie choisir pour connecter les objets ?

Par Frédéric Salles, Président et co-fondateur de Matooma   En 2021, le nombre total d'objets connectés utilisés atteindra les 25 milliards selon Gartner. Il est ainsi légitime de se demander quelles sont les technologies principales permettant de connecter les objets, et quelle pourrait être celle la plus adaptée pour sa solution. Un projet de vidéosurveillance par exemple n'aura absolument pas les mêmes besoins qu'un projet basé sur le relevé de température au milieu du désert. Ainsi pour trouver la meilleure connectivité pour son objet, de nombreuses questions peuvent se poser : mon objet fonctionne-t-il sur batterie ou est-il alimenté ? Mon objet restera-t-il statique ou sera-t-il mobile ?  Mon objet est-il susceptible d'être dans un endroit difficile d'accès ou enterré ? A quelle fréquence mes données doivent-elles remonter ? Etc. Voici les différentes solutions actuellement disponibles sur le marché. Courte distance : RFID/Bluetooth/WiFi La RFID (Ra...

Comment les machines succombent à la chaleur, des voitures aux ordinateurs

  La chaleur extrême peut affecter le fonctionnement des machines, et le fait que de nombreuses machines dégagent de la chaleur n’arrange pas les choses. Afif Ramdhasuma/Unsplash , CC BY-SA Par  Srinivas Garimella , Georgia Institute of Technology et Matthew T. Hughes , Massachusetts Institute of Technology (MIT) Les humains ne sont pas les seuls à devoir rester au frais, en cette fin d’été marquée par les records de chaleur . De nombreuses machines, allant des téléphones portables aux voitures et avions, en passant par les serveurs et ordinateurs des data center , perdent ainsi en efficacité et se dégradent plus rapidement en cas de chaleur extrême . Les machines génèrent de plus leur propre chaleur, ce qui augmente encore la température ambiante autour d’elles. Nous sommes chercheurs en ingénierie et nous étudions comment les dispositifs mécaniques, électriques et électroniques sont affectés par la chaleur, et s’il est poss...

La fin du VHS

La bonne vieille cassette VHS vient de fêter ses 30 ans le mois dernier. Certes, il y avait bien eu des enregistreurs audiovisuels avant septembre 1976, mais c’est en lançant le massif HR-3300 que JVC remporta la bataille des formats face au Betamax de Sony, pourtant de meilleure qualité. Ironie du sort, les deux géants de l’électronique se retrouvent encore aujourd’hui face à face pour déterminer le format qui doit succéder au DVD (lire encadré). Chassée par les DVD ou cantonnée au mieux à une petite étagère dans les vidéoclubs depuis déjà quatre ans, la cassette a vu sa mort programmée par les studios hollywoodiens qui ont décidé d’arrêter de commercialiser leurs films sur ce support fin 2006. Restait un atout à la cassette VHS: l’enregistrement des programmes télé chez soi. Las, l’apparition des lecteurs-enregistreurs de DVD et, surtout, ceux dotés d’un disque dur, ont sonné le glas de la cassette VHS, encombrante et offrant une piètre qualité à l’heure de la TNT et des écrans pl...

De quoi l’inclusion numérique est-elle le nom ?

Les professionnels de l'inclusion numérique ont pour leitmotiv la transmission de savoirs, de savoir-faire et de compétences en lien avec la culture numérique. Pexels , CC BY-NC Par  Matthieu Demory , Aix-Marseille Université (AMU) Dans le cadre du Conseil National de la Refondation , le gouvernement français a proposé au printemps 2023 une feuille de route pour l’inclusion numérique intitulée « France Numérique Ensemble » . Ce programme, structuré autour de 15 engagements se veut opérationnel jusqu’en 2027. Il conduit les acteurs de terrain de l’inclusion numérique, notamment les Hubs territoriaux pour un numérique inclusif (les structures intermédiaires ayant pour objectif la mise en relation de l’État avec les structures locales), à se rapprocher des préfectures, des conseils départementaux et régionaux, afin de mettre en place des feuilles de route territoriales. Ces documents permettront d’organiser une gouvernance lo...

Deepfakes, vidéos truquées, n’en croyez ni vos yeux ni vos oreilles !

Par  Divina Frau-Meigs , Auteurs historiques The Conversation France Les spécialistes en fact-checking et en éducation aux médias pensaient avoir trouvé les moyens de lutter contre les « deepfakes » , ou hypertrucages , ces manipulations de vidéos fondées sur l’intelligence artificielle, avec des outils de vérification comme Invid-Werify et le travail des compétences d’analyse d’images (littératie visuelle), avec des programmes comme Youverify.eu . Mais quelques cas récents montrent qu’une nouvelle forme de cyberattaque vient de s’ajouter à la panoplie des acteurs de la désinformation, le deepfake audio. Aux États-Unis, en janvier 2024, un robocall généré par une intelligence artificielle et prétendant être la voix de Joe Biden a touché les habitants du New Hampshire, les exhortant à ne pas voter, et ce, quelques jours avant les primaires démocrates dans cet État. Derrière l’attaque, Steve Kramer, un consultant travaillant pour un adversaire de Biden, Dean ...