Accéder au contenu principal

Téléphone, mail, notifications… : comment le cerveau réagit-il aux distractions numériques ?

  Par  Sibylle Turo , Université de Montpellier et Anne-Sophie Cases , Université de Montpellier Aujourd’hui, les écrans et les notifications dominent notre quotidien. Nous sommes tous familiers de ces distractions numériques qui nous tirent hors de nos pensées ou de notre activité. Entre le mail important d’un supérieur et l’appel de l’école qui oblige à partir du travail, remettant à plus tard la tâche en cours, les interruptions font partie intégrante de nos vies – et semblent destinées à s’imposer encore davantage avec la multiplication des objets connectés dans les futures « maisons intelligentes ». Cependant, elles ne sont pas sans conséquences sur notre capacité à mener à bien des tâches, sur notre confiance en nous, ou sur notre santé. Par exemple, les interruptions engendreraient une augmentation de 27 % du temps d’exécution de l’activité en cours. En tant que chercheuse en psychologie cognitive, j’étudie les coûts cognitifs de ces interruptions numériques : au

Des ions aux supercondensateurs : le numérique à la rescousse du stockage d’électricité

 

Pour développer les dispositifs de demain, il faut comprendre les phénomènes du stockage d'électricité aux différentes échelles. Ici, une électrode oxyde de fer/oxyde de graphène vue par microscopie. Dilek Ozgit, Department of Engineering, University of Cambridge, CC BY-NC-ND
Par Serge Abiteboul, Inria; Céline Merlet, Centre national de la recherche scientifique (CNRS) et Claire Mathieu, École normale supérieure (ENS) – PSL

Un nouvel « Entretien autour de l’informatique » en collaboration avec Binaire, le blog pour comprendre les enjeux du numérique.

Céline Merlet est une chimiste, chercheuse CNRS au Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT) de Toulouse. C’est une spécialiste des modèles multi-échelles destinés à décrire les matériaux de stockage d’énergie. Le stockage d’énergie (solaire ou éolienne par exemple) devient un défi scientifique majeur. Céline Merlet nous parle des supercondensateurs, une technologie pleine de promesses.


Binaire : Pourrais-tu nous raconter brièvement la carrière qui t’a conduite à être chercheuse en chimie et médaille de bronze du CNRS 2021

Céline Merlet : Au départ je n’étais pas partie pour faire de la chimie mais de la biologie. J’ai fait une prépa et je voulais devenir vétérinaire, mais pendant la prépa, je me suis rendu compte que je m’intéressais de plus en plus à la chimie. J’ai aussi fait un projet de programmation et j’y ai trouvé beaucoup de plaisir. Je suis rentrée, dans une école d’ingénieur, Chimie ParisTech. En 2e année, j’ai fait un stage de trois semaines sur la modélisation de sels fondus, des sels qui deviennent liquides à très hautes températures. J’y ai découvert la simulation numérique de phénomènes du monde réel, j’ai compris que j’avais trouvé ma voie. Après l’école de chimie, je suis retournée faire un doctorat dans ce même labo où j’avais réalisé le stage. Un postdoctorat en Angleterre, et j’ai été recrutée au CNRS en 2017.

B : Pourquoi n’es-tu pas restée en Angleterre ?

CM : Avec la difficulté d’obtenir un poste en France et le fait que j’étais bien installée en Angleterre, j’ai aussi candidaté là-bas. Mais, il y a eu le Brexit et cela a confirmé ma volonté de rentrer en France.

B : Tu es chimiste, spécialiste des systèmes de stockage électrochimique de l’énergie qui impliquent des matériaux complexes. Pourrais-tu expliquer aux lecteurs de binaire ce que cela veut dire ?

CM : Le stockage électrochimique de l’énergie concerne l’utilisation de réactions électrochimiques pour stocker de l’énergie. Les systèmes qu’on connaît qui font ça sont les batteries dans les téléphones et les ordinateurs portables, et les voitures. Les batteries utilisent des matériaux complexes avec certains éléments comme le lithium, le cobalt, et le nickel. On charge et décharge le dispositif en le connectant à un circuit électrique. Les matériaux sont modifiés au cours des charges et décharges. C’est ça qui leur permet de stocker de l’énergie.

Schéma d’un supercondensateur déchargé : pas de charges sur les électrodes, des ions entre les deux
Schéma d’un supercondensateur déchargé. Céline Merlet, Fourni par l'auteur
Schéma d’un supercondensateur chargé : il y a des charges + et -- sur les éléctrodes
Schéma d’un supercondensateur chargé. Céline Merlet, Fourni par l'auteur

Ma recherche porte sur les supercondensateurs. Dans ces systèmes-là, on a deux matériaux poreux qui sont des électrodes qu’on connecte entre elles via un circuit extérieur. Quand on charge (ou décharge), des molécules chargées vont se placer dans des trous ou au contraire en sortent. Un stockage de charge au sein du matériau en résulte. Mais d’une manière très différente de celle des batteries. Il n’y a pas de réaction chimique. C’est une simple adsorption des molécules chargées.

B : Tu travailles sur la modélisation moléculaire, en quoi est-ce que cela consiste ?

CM : J’ai parlé des deux électrodes qui sont en contact avec cette solution d’ions chargés. Souvent pour les supercondensateurs, ce sont des carbones nanoporeux. Les pores font à peu près la taille du nanomètre (1 millionième de millimètre) : c’est quelque chose qu’on ne peut pas observer à l’œil nu. Pour comprendre comment les ions entrent et sortent de ces pores de carbone, au lieu de faire des expériences physiques, des mélanges dans un laboratoire, je fais des expériences numériques, des mélanges dans l’ordinateur. J’essaie de comprendre comment les ions bougent et ce qui se passe, à une échelle qu’on ne peut pas atteindre expérimentalement.

B : Ça exige de bien comprendre les propriétés physiques ?

CM : Oui pour modéliser la trajectoire des ions, la façon dont ils se déplacent, il faut bien comprendre ce qui se passe. Quand on lance une balle, si on donne les forces qu’on applique au départ, on peut en déduire la trajectoire. Pour les ions c’est pareil. On choisit le point de départ. On sait quelles forces s’appliquent, les forces d’attraction et de répulsion. On a des contraintes comme le fait qu’une molécule ne peut pas pénétrer à l’intérieur d’une autre. Cela nous permet de calculer l’évolution du système de molécules au cours du temps. Parfois, on n’a même pas besoin de représenter ça de manière très précise. Si une modélisation même grossière est validée par des expériences, on a le résultat qu’on recherchait. Dans mon labo, le CIRIMAT, il y a principalement des expérimentateurs. Nous sommes juste 4 ou 5 théoriciens sur postes permanents. Dans mon équipe, des chercheurs travaillent directement sur des systèmes chimiques réels et on apprend beaucoup des échanges théorie/expérience.

B : Typiquement, combien d’atomes sont-ils impliqués par ces simulations ?

CM : Dans ces simulations numériques, on considère de quelques centaines à quelques milliers d’atomes. Dans une expérience réelle, c’est au moins 1024 atomes. (Un millilitre d’eau contient déjà 1022 molécules.)

B : Et malgré cela, vous arrivez à comprendre ce qui se passe pour de vrai…

CM : On utilise des astuces de simulation pour retrouver ce qui se passe dans la réalité. Une partie de mon travail consiste à développer des modèles pour faire le lien entre l’échelle moléculaire et l’échelle expérimentale. Quand on change d’échelle, ça permet d’intégrer certains éléments mais on perd d’autres informations de l’échelle moléculaire.

B : Dans ces simulations des électrodes de carbone au sein de supercondensateurs modèles en fonctionnement, quels sont les verrous que tu as dû affronter ?

CM : Au niveau moléculaire, il y a encore des progrès à faire, et des ordinateurs plus puissants pourraient aider. Les matériaux conduisent l’électricité, les modèles considèrent que les carbones sont parfaitement conducteurs, mais en réalité ils ne le sont pas. Pour une meilleure représentation, il faudrait tenir compte du caractère semi-conducteur de ces matériaux et certains chercheurs travaillent sur cet aspect en ce moment.

Pour obtenir des matériaux qui permettraient de stocker plus d’énergie, il nous faudrait mieux comprendre les propriétés microscopiques qui ont de l’influence sur ce qui nous intéresse, analyser des résultats moléculaires pour essayer d’en extraire des tendances générales. Par exemple, si on a deux liquides qui ont des ions différents, on fait des mélanges ; on peut essayer brutalement plein de mélanges et réaliser des simulations pour chacun, ou on peut en faire quelques-unes seulement et essayer de comprendre d’un mélange à un autre pourquoi le coefficient de diffusion par exemple est différent et prédire ainsi ce qui se passera pour n’importe quel mélange. Mieux on comprend ce qui se passe, moins il est nécessaire de faire des modélisations moléculaires sur un nombre massif d’exemples.

Les électrodes de carbone sont en bleu, les anions en vert et les cations en violet
Configuration extraite de la simulation d’un supercondensateur modèle par dynamique moléculaire. Les électrodes de carbone sont en bleu, les anions en vert et les cations en violet. Céline Merlet, Fourni par l'auteur

B : Tu as reçu le prix « 2021 Price Ada Lovelace » de calcul haute performance (HPC). Est-ce que tu te présentes plutôt comme chimiste, ou comme une spécialiste du HPC ?

CM : Je ne me présente pas comme une spécialiste du calcul HPC mais mes activités nécessitent un accès à des ordinateurs puissants et des compétences importantes dans ce domaine. Une partie de mon travail a consisté en des améliorations de certains programmes pour pouvoir les utiliser sur les supercalculateurs. Rendre des calculs possibles sur les supercalculateurs, cela ouvre des perspectives de recherche, et c’est une contribution en calcul HPC.

B : Quelles sont les grandes applications de ton domaine ?

CM : Concernant les supercondensateurs, c’est déjà utilisé dans les systèmes start-and-stop des voitures. C’est aussi utilisé dans les bus hybrides : on met des supercondensateurs sur le toit du bus, et à chaque fois qu’il s’arrête, on charge ces supercondensateurs et on s’en sert pour faire redémarrer le bus. On peut ainsi économiser jusqu’à 30 % de carburant. Des questions qui se posent : Est-ce qu’on pourrait stocker plus d’énergie ? Est-ce qu’on pourrait utiliser d’autres matériaux ?

Bus hybride utilisant des supercondensateurs. Muséum de Toulouse, Fourni par l'auteur

B : On sait que les batteries de nos téléphones faiblissent assez vite. Pourrait-on les remplacer par des supercondensateurs ?

CM : Si les batteries stockent plus d’énergie que les supercondensateurs, elles se dégradent davantage avec le temps. Au bout d’un moment le téléphone portable n’a plus la même autonomie que quand on a acheté le téléphone. Un supercondensateur peut être chargé et déchargé très vite un très grand nombre de fois sans qu’il soit détérioré. Pourtant, comme les quantités d’énergie qu’ils peuvent stocker sont bien plus faibles, on n’imagine pas que les supercondensateurs standards puissent remplacer les batteries. On voit plutôt les deux technologies comme complémentaires. Et puis, la limite entre supercondensateur et batterie peut être un peu floue.

B : Tu es active dans « Femmes et Sciences ». Est-ce que tu peux nous dire ce que tu y fais et pourquoi tu le fais ?

CM : J’observe qu’on est encore loin de l’égalité femme-homme. En chimie, nous avons une assez bonne représentativité des femmes. Dans mon laboratoire, qui correspond bien aux observations nationales, il y a 40 % de femmes. Mais en sciences en général, elles sont peu nombreuses.

Un but de « Femmes et Sciences » est d’inciter les jeunes, et particulièrement les filles, à s’engager dans des carrières scientifiques. Je suis au conseil d’administration, en charge du site web, et je coordonne avec d’autres personnes les activités en région toulousaine. Je suis pas mal impliquée dans les interventions avec les scolaires, dans des classes de lycée ou de collège : on parle de nos parcours ou on fait des ateliers sur les stéréotypes, de petits ateliers pour sensibiliser les jeunes aux stéréotypes, pour comprendre ce que c’est et ce que ça peut impliquer dans les choix d’orientation.

Nous avons développé en 2019 un jeu, Mendeleieva, pour la célébration des 150 ans de la classification périodique des éléments par Mendeleïev. Nous l’utilisons pour mettre en avant des femmes scientifiques historiques ou contemporaines : on a un tableau et on découvre à la fois l’utilité des éléments et les femmes scientifiques qui ont travaillé sur ces éléments. Nous sommes en train de numériser ce jeu.

L’association mène encore beaucoup d’autres actions comme des expos, des livrets, etc.

B : La programmation est un élément clé de ton travail ; est-ce que tu programmes toi-même ?

CM : J’adore programmer. Mais comme je passe pas mal de temps à faire de l’encadrement, à voyager et à participer à des réunions, j’ai moins de temps pour le faire moi-même. Je suis les doctorants qui font ça. Suivant leur compétence et leur appétence, je programme plus ou moins.

B : D’où viennent les doctorants qui passent dans ton équipe ? Sont-ils des chimistes au départ ?

CM : Ils viennent beaucoup du monde entier : Maroc, Grèce, Inde. Ils sont physiciens ou chimistes. J’ai même une étudiante en licence d’informatique en L3 qui fait un stage avec moi.

B : Est-ce que certains thèmes de recherche en informatique sont particulièrement importants pour vous ?

CM : En ce moment, on s’interroge sur ce que pourrait apporter l’apprentissage automatique à notre domaine de recherche. Par exemple, pour modéliser, on a besoin de connaître les interactions entre les particules. Des collègues essaient de voir si on pourrait faire de l’apprentissage automatique des champs de force. Nous ne sommes pas armés pour attaquer ces problèmes, alors nous collaborons avec des informaticiens.The Conversation

Serge Abiteboul, Directeur de recherche à Inria, membre de l'Académie des Sciences, Inria; Céline Merlet, Chercheuse au Centre Inter-universitaire de Recherche et d’Ingénierie des Matériaux (CIRIMAT) de Toulouse, Toulouse INP, Université Toulouse III-Paul Sabatier, Centre national de la recherche scientifique (CNRS) et Claire Mathieu, Directrice de recherche CNRS, Paris, École normale supérieure (ENS) – PSL

Cet article est republié à partir de The Conversation sous licence Creative Commons. Lire l’article original.

Posts les plus consultés de ce blog

Le bipeur des années 80 plus efficace que le smartphone ?

Par André Spicer, professeur en comportement organisationnel à la Cass Business School (City University of London) : Vous vous souvenez des bipeurs ? Ces appareils étaient utilisés largement avant l'arrivée massive des téléphones portables et des SMS. Si vous aviez un bipeur, vous pouviez recevoir des messages simples, mais vous ne pouviez pas répondre. Un des rares endroits où on peut encore en trouver aujourd’hui sont les hôpitaux. Le Service National de Santé au Royaume-Uni (National Health Service) en utilise plus de 130 000. Cela représente environ 10 % du nombre total de bipeurs présents dans le monde. Une récente enquête menée au sein des hôpitaux américains a révélé que malgré la disponibilité de nombreuses solutions de rechange, les bipeurs demeurent le moyen de communication le plus couramment utilisée par les médecins américains. La fin du bipeur dans les hôpitaux britanniques ? Néanmoins, les jours du bipeur dans les hôpitaux britanniques pourraient être compté

Comment les machines succombent à la chaleur, des voitures aux ordinateurs

  La chaleur extrême peut affecter le fonctionnement des machines, et le fait que de nombreuses machines dégagent de la chaleur n’arrange pas les choses. Afif Ramdhasuma/Unsplash , CC BY-SA Par  Srinivas Garimella , Georgia Institute of Technology et Matthew T. Hughes , Massachusetts Institute of Technology (MIT) Les humains ne sont pas les seuls à devoir rester au frais, en cette fin d’été marquée par les records de chaleur . De nombreuses machines, allant des téléphones portables aux voitures et avions, en passant par les serveurs et ordinateurs des data center , perdent ainsi en efficacité et se dégradent plus rapidement en cas de chaleur extrême . Les machines génèrent de plus leur propre chaleur, ce qui augmente encore la température ambiante autour d’elles. Nous sommes chercheurs en ingénierie et nous étudions comment les dispositifs mécaniques, électriques et électroniques sont affectés par la chaleur, et s’il est possible de r

De quoi l’inclusion numérique est-elle le nom ?

Les professionnels de l'inclusion numérique ont pour leitmotiv la transmission de savoirs, de savoir-faire et de compétences en lien avec la culture numérique. Pexels , CC BY-NC Par  Matthieu Demory , Aix-Marseille Université (AMU) Dans le cadre du Conseil National de la Refondation , le gouvernement français a proposé au printemps 2023 une feuille de route pour l’inclusion numérique intitulée « France Numérique Ensemble » . Ce programme, structuré autour de 15 engagements se veut opérationnel jusqu’en 2027. Il conduit les acteurs de terrain de l’inclusion numérique, notamment les Hubs territoriaux pour un numérique inclusif (les structures intermédiaires ayant pour objectif la mise en relation de l’État avec les structures locales), à se rapprocher des préfectures, des conseils départementaux et régionaux, afin de mettre en place des feuilles de route territoriales. Ces documents permettront d’organiser une gouvernance locale et dé

Ce que les enfants comprennent du monde numérique

  Par  Cédric Fluckiger , Université de Lille et Isabelle Vandevelde , Université de Lille Depuis la rentrée 2016 , il est prévu que l’école primaire et le collège assurent un enseignement de l’informatique. Cela peut sembler paradoxal : tous les enfants ne sont-ils pas déjà confrontés à des outils numériques, dans leurs loisirs, des jeux vidéos aux tablettes, et, dans une moindre mesure, dans leur vie d’élève, depuis le développement des tableaux numériques interactifs et espaces numériques de travail ? Le paradoxe n’est en réalité qu’apparent. Si perdure l’image de « natifs numériques », nés dans un monde connecté et donc particulièrement à l’aise avec ces technologies, les chercheurs ont montré depuis longtemps que le simple usage d’outils informatisés n’entraîne pas nécessairement une compréhension de ce qui se passe derrière l’écran. Cela est d’autant plus vrai que l’évolution des outils numériques, rendant leur utilisation intuitive, a conduit à masquer les processus in

Midi-Pyrénées l’eldorado des start-up

Le mouvement était diffus, parfois désorganisé, en tout cas en ordre dispersé et avec une visibilité et une lisibilité insuffisantes. Nombreux sont ceux pourtant qui, depuis plusieurs années maintenant, ont pressenti le développement d’une économie numérique innovante et ambitieuse dans la région. Mais cette année 2014 pourrait bien être la bonne et consacrer Toulouse et sa région comme un eldorado pour les start-up. S’il fallait une preuve de ce décollage, deux actualités récentes viennent de l’apporter. La première est l’arrivée à la tête du conseil de surveillance de la start-up toulousaine Sigfox , spécialisée dans le secteur en plein boom de l’internet des objets, d’Anne Lauvergeon, l’ancien sherpa du Président Mitterrand. Que l’ex-patronne du géant Areva qui aurait pu prétendre à la direction de grandes entreprises bien installées, choisisse de soutenir l’entreprise prometteuse de Ludovic Le Moan , en dit long sur le changement d’état d’esprit des élites économiques du pay

La fin du VHS

La bonne vieille cassette VHS vient de fêter ses 30 ans le mois dernier. Certes, il y avait bien eu des enregistreurs audiovisuels avant septembre 1976, mais c’est en lançant le massif HR-3300 que JVC remporta la bataille des formats face au Betamax de Sony, pourtant de meilleure qualité. Ironie du sort, les deux géants de l’électronique se retrouvent encore aujourd’hui face à face pour déterminer le format qui doit succéder au DVD (lire encadré). Chassée par les DVD ou cantonnée au mieux à une petite étagère dans les vidéoclubs depuis déjà quatre ans, la cassette a vu sa mort programmée par les studios hollywoodiens qui ont décidé d’arrêter de commercialiser leurs films sur ce support fin 2006. Restait un atout à la cassette VHS: l’enregistrement des programmes télé chez soi. Las, l’apparition des lecteurs-enregistreurs de DVD et, surtout, ceux dotés d’un disque dur, ont sonné le glas de la cassette VHS, encombrante et offrant une piètre qualité à l’heure de la TNT et des écrans pl